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ABSTRACT

Motivation: Flux balance analysis (FBA) is a well-known technique
for genome-scale modeling of metabolic flux. Typically, an FBA
formulation requires the accurate specification of four sets:
biochemical reactions, biomass metabolites, nutrients and secreted
metabolites. The development of FBA models can be time
consuming and tedious because of the difficulty in assembling
completely accurate descriptions of these sets, and in identifying
errors in the composition of these sets. For example, the presence
of a single non-producible metabolite in the biomass will make the
entire model infeasible. Other difficulties in FBA modeling are that
model distributions, and predicted fluxes, can be cryptic and difficult
to understand.
Results: We present a multiple gap-filling method to accelerate the
development of FBA models using a new tool, called MetaFlux,
based on mixed integer linear programming (MILP). The method
suggests corrections to the sets of reactions, biomass metabolites,
nutrients and secretions. The method generates FBA models directly
from Pathway/Genome Databases. Thus, FBA models developed in
this framework are easily queried and visualized using the Pathway
Tools software. Predicted fluxes are more easily comprehended by
visualizing them on diagrams of individual metabolic pathways or
of metabolic maps. MetaFlux can also remove redundant high-flux
loops, solve FBA models once they are generated and model the
effects of gene knockouts. MetaFlux has been validated through
construction of FBA models for Escherichia coli and Homo sapiens.
Availability: Pathway Tools with MetaFlux is freely available to
academic users, and for a fee to commercial users. Download from:
biocyc.org/download.shtml.
Contact: mario.latendresse@sri.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Flux balance analysis (FBA) is a methodology (Orth et al.,
2010; Thiele and Palsson, 2010) for constructing genome-scale,
steady-state models of metabolic networks. It has a variety
of applications from evaluation of potential growth media for
an organism to prediction of phenotypes of knockout mutants.
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However, current FBA technology has a number of limitations.
The development of FBA models is extremely time consuming,
requiring 12–24 months (Thiele and Palsson, 2010). Once
developed, models are typically communicated using cryptic data
files that make the models difficult for other parties to comprehend
and evaluate. The fluxes calculated by a model are also difficult to
comprehend—interpreting the long list of fluxes produced from an
FBA computation to understand the flux levels of reactions within
the network can be very time consuming.

We present a new software technology for generating FBA models
that accelerates model development and produces models that are
easier to inspect and comprehend. Our approach, based on a new
tool called MetaFlux, couples FBA with pathway databases (DBs)
via the Pathway Tools (Karp et al., 2010) software environment, of
which MetaFlux is a part.

The first phase of model development is to infer a metabolic
reaction list from an annotated genome sequence. Although
some groups appear to still perform this process in a manual
fashion (Thiele and Palsson, 2010), Pathway Tools has performed
this process automatically for many years (Dale et al., 2010; Paley
and Karp, 2002). It maps the enzyme names, EC numbers and
Gene Ontology terms found in an annotated genome to reactions
in the MetaCyc DB (Caspi et al., 2010). The resulting reaction list
(and predicted metabolic pathways and pathway hole fillers) are
stored in the form of a Pathway/Genome Database (PGDB).

MetaFlux provides a novel completion method for accelerating
the second phase of model development, in which the reaction list,
plus associated nutrient, secretion,and biomass metabolite sets, are
converted to a functional FBA model. By completion we mean the
software suggests components (e.g. reactions and nutrients) to add
to a model to render the model feasible. A model is feasible if the
linear optimizer used to solve the system of equations of which
an FBA model is comprised, can find a non-zero solution to those
equations. Intuitively, for an FBA model to be feasible, it means that
the metabolic network can produce all compounds in the biomass
equation from the nutrients. The completion method reduces the
time-consuming work of meticulously refining the network of
reactions, the set of biomass metabolites and the selection of
appropriate metabolites as nutrients and secretions (e.g. byproducts,
toxins and signaling molecules), which are needed to produce a
feasible FBA model.

Genome-scale metabolic network models typically contain
hundreds of reactions, and are typically missing reactions in their
early formulations, since most genome-scale networks are derived
from genome annotations that are themselves incomplete. Similarly,
the initially formulated set of nutrient and secreted compounds may
be incomplete. Any of the preceding omissions can result in an
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infeasible FBA model. The MetaFlux gap-filler suggests changes
to the reaction network [an approach pioneered by (Kumar et al.,
2007)], and to the nutrients and secretions, that will complete the
model to make it feasible.

In addition, the initially formulated biomass metabolite set
could contain metabolites that cannot be produced even after the
reaction network, nutrients and secretions have been extended by
the gap-filler. Rather than simply report that the model is infeasible,
the MetaFlux gap-filler identifies the maximal subset of biomass
metabolites that can be produced, thus focusing the user’s model
refinement work on the unproducible metabolites.

One way to use MetaFlux to correct an infeasible model is as
follows. In practice, a user can start with a very simple model
(a fixed-part) that is trivially feasible (e.g. no biomass is produced)
and use MetaFlux to complete it to produce the maximal subset of
biomass metabolites coming from the infeasible model by adding a
minimum number of additional nutrients, secretions and reactions
from try-sets. Metaflux is often used in that manner by starting
from a fixed-part that is feasible and adding necessary and useful
components from user-specified try-sets to obtain a feasible model
with a maximal set of biomass metabolites. This approach is
productive as a feasible model is always obtained, whereas starting
with a fixed-part that is infeasible might not create a feasible model.

A related problem is that the user might want to assess, if
additional biomass metabolites are considered for addition to the
model, what is the maximal set of those additional metabolites that
can be added while maintaining a feasible model. For example,
in Lee et al. (2009), the authors did a laborious search for the
set of metabolites that could be added to their biomass reaction.
Answering the preceding question using other FBAsoftware requires
an exponential number of trials if all subsets are tried, whereas
MetaFlux can answer this question in one trial.

Furthermore, our approach facilitates the comprehension of
FBA models, because the PGDB containing the FBA model can
be published on the Web (e.g. see BioCyc.org) where the user
can explore the FBA model using a wide range of query and
visualization tools (such as to visualize metabolites, reactions,
pathways and their connections to the genome). Comprehension of
predicted metabolic fluxes can be enhanced by painting those fluxes
onto a metabolic network diagram and onto pathway diagrams.
Comparison of FBA models is facilitated by the use of controlled
vocabularies for metabolites, reactions and pathways across multiple
pathway DBs (and the associated FBAmodels). In addition, Pathway
Tools contains model validation tools including a reaction-balanced
checker and a tool for identifying dead-end metabolites (Karp et al.,
2010).

2 SYSTEMS AND METHODS
This article focuses on the generation of FBA models via a method we
call Multiple gap-filling. Gap-filling (Kumar et al., 2007; Orth and Palsson,
2010; Reed et al., 2006) is the process of completing the reaction network
of an organism, by adding reactions from a reference DB, to produce
a set of biomass metabolites. In general, such a completion might be
infeasible (meaning the linear optimizer still finds no solution even after
gap-filling) since some biomass metabolites might not be producible even
by adding all reactions from the reference DB. When the completion is
infeasible, it is necessary to modify the biomass reaction to remove some of
its metabolites and retry the gap-filling process. Doing so manually is very
time consuming as it is potentially necessary to try all subsets of the biomass

metabolites. Similarly for nutrients and secretions, it is sometimes necessary
to add nutrients and secretions to obtain a feasible FBA model, but manual
exploration of all combinations will be tedious.

The objective function of an FBA model is not always the maximization
of the biomass. For example, ATP production is sometimes the objective
function to maximize. Nevertheless, we consider that all objective functions
can be expressed by a set of metabolites. Such a set of metabolites can be
represented in MetaFlux as the ‘biomass’.

Multiple gap-filling is an extension of gap-filling where an FBA model
is generated by simultaneously computing minimal completions of the
reactions in the reaction network, the metabolites for the biomass reaction,
the nutrients and the secretions.

Feasibility of an FBA model is the most fundamental aspect to maintain.
Without a feasible FBA model, no fluxes can be obtained. Therefore, our
approach is to start with the smallest feasible model and complete it as much
as possible by maintaining feasibility. Indeed, starting with an infeasible
model is problematic since it is not guaranteed that a feasible model will be
obtained even via multiple gap-filling. By starting with a feasible model, it is
possible to guarantee that a feasible completed model will be obtained. For
example, an FBA model that is not required to produce any metabolite in the
biomass is trivially feasible. Starting with such a model, it might be possible
to complete it, and still maintain feasibility, by adding metabolites to the
biomass. This might require adding reactions to the reaction network and/or
adding metabolites as nutrients or secretions. This process is essentially the
approach of multiple gap-filling.

In general, our approach uses try-sets and fixed-sets. The fixed-sets are
the elements of the model of which we are the most confident: the current
set of reactions in the reaction network of the organism, the most likely set
of metabolites in the biomass reaction, and the likely sets of metabolites for
nutrients and secretions. These sets form the initial FBAmodel.As mentioned
in the previous paragraph, the set of metabolites for the biomass might be
empty. It is even recommended to begin with an empty biomass fixed-set to
ensure feasibility of the initial model.

Similarly, there are four try-sets corresponding to the fixed-sets. These
try-sets are supplied by the user as sources from which the software can
complete the FBA model. The try-set for reactions, simply called the try-
reactions set, is a reference DB of reactions. In the experimental results
provided in this article, we used MetaCyc (Caspi et al., 2010; Karp and Caspi,
2011) as a reference DB for reactions. MetaCyc version 15.0 contains 9200
metabolic reactions. Try-sets are also provided for biomass components,
nutrients and secretions. In all, four fixed-sets and four try-sets are provided
by the user.

In summary, the approach is to start with properly chosen try-sets, that
can, without major impediments, contain extraneous elements, and iteratively
move the appropriate elements from the try-sets to the fixed-sets as suggested
by MetaFlux. The fixed-sets form the final FBA models.

3 ALGORITHM
We present the mathematical formulation to complete an FBA
model, formulated as a mixed integer linear program given the
try-sets and fixed-sets. We assume that all reactions have been
processed such that all generic reactions have been transformed into
one or several instantiated reactions (Section 4.1). All unbalanced
reactions are also removed as discussed in Section 4.1.

The mixed integer linear programming (MILP) formulation has a
fixed-part and a try-part. The fixed-part consists of four fixed-sets:
the reactions R, the nutrient metabolites N, the secretion metabolites
S and the biomass metabolites B. Similarly, in general, four
corresponding try-sets are given: the try-reactions Rt , the try-nutrient
metabolites Nt , the try-secretion metabolites St and the try-biomass
metabolites Bt .
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The sets R and Rt contain only unidirectional reactions. That is, if a
reversible reaction is present in the model, two reactions, of opposite
direction, are used to represent it. Therefore, in a solution, all
reaction fluxes are zero or positive. Notice that the set Rt contains
not only the try-reactions from a reference DB, but also, if requested
by the user, all reversed forms of irreversible reactions from the
reference DB and/or the PGDB of the organism. This approach
supports exploration of reversed reactions from the PGDB and from
the reference DB.

A binary variable is associated with each element of Rt , Nt , St and
Bt . We denote by V the set of binary variables. Each binary variable
controls the presence or absence of the corresponding reaction
or metabolite in the model. In the following, we formulate the
constraints based on these binary variables to control the completion
of a model, that is, to formulate a MILP that performs multiple
gap-filling.

Since we are using MILP, all constraints must be linear. That
is, all constraints are of the form

∑
cixi = bi where the ci

and bi are constants and xi are variables. For each reaction r (rt

for try-reaction), a continuous variable fr (frt for try-reaction rt)
is introduced to represent its flux. Each reaction is unidirectional,
so that the value of the flux is zero or positive. An frt variable is
conditionally bounded by its binary variable srt . That is, assuming
that all flux reactions are bounded above by the constant b, then
the following constraint is added to the MILP formulation for each
try-reaction rt :

0≤ frt ≤bsrt

This constraints the flux of the try-reaction to be zero, if the binary
variable srt is zero, essentially not adding try-reaction rt to the
model; otherwise, when srt is one, the flux of the try-reaction rt

can be any positive value bounded by b. Furthermore, since the
objective function (see below) has the term wrt srt where the weight
wrt is non-zero and negative, srt will be set to one only if rt is
non-zero since when rt is zero the objective function could be made
trivially higher by setting srt to zero. So, the variable frt , representing
the flux of try-reaction rt , is non-zero if and only if srt is one.

The formulation for a try-nutrient, a try-secretion or a try-biomass
metabolite is similar to a try-reaction. In fact, a nutrient n is
essentially an exchange reaction from nothing to n; likewise for a
secretion s, it is a reaction from s to nothing. Therefore, try-nutrients,
try-secretions and try-biomass metabolites can be encoded in the
MILP formulation as special try-reactions.

Notice that the try-biomass metabolites are independent of each
other; that is, each try-biomass metabolite has its own binary
variable. On the other hand, in a typical FBA formulation, the
biomass metabolites are represented as one biomass reaction, not
one reaction per biomass metabolite. Therefore, to have a non-zero
flux for the biomass, each metabolite of the biomass reaction must
be produced by the model. This constraint alone is very strong and
can likely make an FBA model infeasible. In contrast, the MILP
formulation avoids such a strong constraint.

The general objective of the desired FBA model is specified by the
user. This objective can take many different forms: (i) generate as
many biomass metabolites as possible suggesting to add a minimum
number of reactions or (ii) generate a maximum number of secreted
metabolites by suggesting to add a minimum number of reactions,
and more. These objectives can be specified by providing numerical
coefficients, called weights and denoted wi, for each type of

try-reaction, try-secretion, try-nutrient and try-biomass. Therefore,
the MILP objective function to maximize is

∑

si∈V

wisi. (1)

As mentioned, the value of the weight coefficient wi depends on
the object controlled by binary variable si. To be more precise, the
weight depends on the type of component (e.g. nutrient) associated
with the binary variable si: this weight could be for a nutrient,
secretion or biomass metabolite; or one of the weights for a reaction
(e.g. taxonomic range of a reaction from the reference DB). We use
different weight parameters for the reactions from the reference DB
(MetaCyc) depending on the following conditions:

(1) the reaction is in the taxonomic range of the PGDB;

(2) the reaction is outside the taxonomic range of the PGDB;

(3) the reaction’s taxonomic range is unknown ;

(4) the reverse reaction is used; and

(5) the reaction is spontaneous.

A reversed reaction from the PGDB has also its own weight.
Notice that the weights of reactions do not take into account known
metabolic pathways, although this approach could be explored in
future work. The selection of appropriate weights is further discussed
in Section 3.3. This objective function has an additional term, not
shown here, to avoid high fluxes in loops as described in Section 3.2.
The next subsection describes another term that could be added to
the objective function.

3.1 Biomass and the objective function
A variation of the objective function (1) is the following:

wBfB +
∑

si∈V

wisi (2)

The term wBfB was added to Equation (1). The variable fB
represents the flux of the biomass reaction composed of the fixed
biomass metabolites and wB a user-given weight (typically a positive
integer). Notice that the fluxes of the try-biomass metabolites do not
contribute to fB.

One possible scenario in the use of such an objective function
would be to answer questions like: which reactions could be added
to increase the flux of the biomass reaction? Or could some nutrients
be used to increase the flux of the biomass reaction?

Such questions can be answered by selecting appropriate weights
for the reactions to add versus the weight wB. For example, selecting
wB =2 (that is, a gain of 2 units per one unit of flux) and a weight of
−20 (that is, a cost of 20 units) for any reaction to add would allow
adding one reaction for each increase of 10 units in the fB flux. The
term wBfB can easily be deactivated by selecting the weight wB to
be zero. Notice that the term fB is typically the objective function
of an FBA formulation that has no try-sets. That is, fB is the typical
objective of an FBA formulation to maximize.

3.2 Loops and unbounded fluxes
It can often be observed that the formulation of Section 3 produces
a solution with high fluxes assigned to many reactions. These fluxes
are close to their upper bound and many do not contribute to the
biomass (example: Fig. 1). Some reactions might contribute some
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Fig. 1. Hypothetical reactions with high fluxes but contributing zero flux
to the biomass. This is a very simple reaction network where each reaction
has only one reactant and one product. Metabolite N is the nutrient and
metabolite B is the sole metabolite in the biomass. Metabolite I is some other
intermediate metabolite. Reactions R1 and R2 contribute to the biomass with
a flux of 5. Reactions R3 and R4 have a very high flux of 1000 but they do
not contribute to the biomass, although they do produce metabolite A.

fluxes to the biomass while others might simply be set to a zero
flux and no change to the biomass would occur. These high fluxes
are often caused by cycles in the network, and are called loops by
some authors (Pinchuk et al., 2010; Price et al., 2006; Smallbone
and Simeonidis, 2009).

Loop fluxes are a significant impediment when analyzing FBA
results, because they mislead the user into thinking that these
reactions are major contributors to biomass production. For example,
in our Escherichia coli FBA model we often observed tens of loop
reactions. Therefore, it is preferable to limit the fluxes of these
reactions to biologically reasonable values.

The MILP formulation of Section 3 does not provide a solution
with accurate absolute fluxes, but rather it provides accurate relative
fluxes. By relative fluxes, we mean that the correct ratios of the
biomass metabolite fluxes are found, but not necessarily the correct
absolute fluxes. Therefore, it is not necessary to apply a technique
that would control the unbounded high fluxes and at the same time
find the exact absolute fluxes. The following term is added to the
objective function 1 to remove loops, with the biological justification
that an organism does not need to produce more metabolites,
and/or in greater quantities, if these metabolites are not used to
either produce more metabolites, and/or in greater quantities, in the
biomass or as secretion.

−ch
∑

ri

fri ,where ch ≥0 (3)

That is, the sum of the reaction fluxes (including any reactions
added to the model) is added to the objective function scaled
with a negative factor. This term minimizes the fluxes while still
maximizing the general objective. These reactions do not include
the virtual reactions representing the biomass metabolites, nutrients
or secretions. Since the objective function is maximized and the
overall term is negative, the fluxes will be minimized. The factor ch
is typically a small positive value <1. It reduces the importance of the
term

∑
ri

fri compared with the other terms of the objection function
so that adding a reaction to increase other gains is not detrimental.

In summary, the general objective function is obtained by adding
terms 2 and 3 giving

wBfB +
∑

si∈V

wisi −ch
∑

ri

fri (4)

where wB is a weight (integer), fB is the flux (real value) of the
biomass reaction, si is a boolean variable, V is the set of all boolean
variables, wi is a weight (integer), ri is any reaction, ch is a small
non-negative constant (typically <1) and fri is the flux (real value)
of reaction ri.

3.3 Selecting values for the weights
The selection of the appropriate weight values in the MILP
formulation of Section 3 is key in solving specific goals. We present
some common goals and discuss weight selection for them. In
general, we use the term weight to mean either a cost (a negative
weight) or a gain (a positive weight). All weights are integers.

Favoring biomass metabolites: a popular goal is to produce as
many biomass metabolites as possible from the given try-sets. For
such a goal, the gain on each biomass metabolite should be set to a
value larger than the cost of adding several reactions, nutrients and
secretions. For example, if the cost of adding any reaction is set
to 10 (that is, a negative weight of −10), and we accept adding as
many as 20 reactions to produce one metabolite in the biomass, the
gain on each metabolite of the biomass should be set to at least 200
(weight 200).

In the extreme case, we might be interested in making sure that
any number of reactions could be added to produce any metabolite.
In that case, the gain (positive weight) for adding one biomass
metabolite should be greater to the sum of the costs of adding all
possible reactions from the reference DB.

Favoring secreted metabolites: there are many possible solutions
to an FBA problem, i.e. alternative sets of reactions with non-zero
fluxes that produce the biomass metabolites. But the reactions that
secrete a metabolite could be considered more biologically correct
than those that do not secrete any metabolite for the same biomass
produced. In such a case, the reactions producing these secretions
should be favored in the model.

The general MILP formulation 3 allows any values for the
weights, in particular for the secretions: we could favor secretions
by selecting a strictly positive value for their weight, say 5. This
positive weight would have the effect of favoring reactions that
produce the secreted metabolites, not only the added reactions from
the reference PGDB, but also reactions from the organism. Indeed,
any reaction set to a non-zero flux that could produce an excess of
the secreted metabolite would increase the objective function.

4 IMPLEMENTATION
MetaFlux is tightly integrated with Pathway Tools (Karp et al.,
2010). A user interface controls execution of both the gap-filler and
the FBAmodel solver. MetaFlux automatically generates an MILP or
linear program (for the gap-filler or FBA model solver, respectively)
from a PGDB, as a file in .lp format. MetaFlux invokes the SCIP
solver on that file, retrieves the solution and produces a report file
that lists all suggestions of the gap-filler, and the predicted reaction
fluxes.

The user can request that predicted fluxes be painted on the
Cellular Overview (Latendresse and Karp, 2011), which is an
organism-specific metabolic map diagram generated by Pathway
Tools from an PGDB. The range of flux values is mapped to a color
scale, and each reaction that carries a flux is assigned an appropriate
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color value from that scale. Animation can be used for the visual
comparison of different flux states, e.g. of fluxes resulting from
growth under different nutrients. Fluxes can also be displayed on
individual pathway diagrams.

Since the PGDB is the FBA model, FBA models developed with
MetaFlux are readily inspectible using the wide range of query and
visualization tools in Pathway Tools (Karp et al., 2010), which can
run as both a desktop application and as a web server. Users can
easily look up individual reactions or metabolites; metabolite pages
list all reactions and pathways in which the metabolite participates,
and provide the chemical structure and alternative names for the
metabolite. Pathway pages depict the organization of reactions
into metabolic pathways. The E.coli and human FBA models
described in the next sections are accessible via the EcoCyc.org and
HumanCyc.org websites, and through the Supplementary Material.

Another advantage of constructing FBA models within the
Pathway Tools environment is that such models are based
on controlled vocabularies of metabolites and reactions. Most
metabolite and reaction objects within each PGDB were
computationally derived from the MetaCyc DB by the PathoLogic
program. That derivation process assigns the same DB object
identifiers to a given metabolite and reaction in every PGDB, thus
facilitating comparison of PGDBs and FBA models from multiple
organisms using the large number of Pathway Tools comparison
operations.

Pathway Tools includes a variety of editing tools for interactively
updating a PGDB including a reaction editor, a chemical structure
editor and a pathway editor (Karp et al., 2010). In addition, Pathway
Tools can export a PGDB to SBML format.

4.1 Preprocessing of reactions
Instantiation of generic reactions: many enzymatic reactions
are written in the biomedical literature as ‘generic reactions’
whose metabolites include one or more compound classes (e.g. ‘a
carbohydrate’). Pathway Tools can faithfully represent such generic
reactions and the corresponding compound classes and instances,
and generic reactions are used extensively in MetaCyc and other
PGDBs because of the brevity with which they represent a family
of reactions.

However, generic reactions introduce difficulties in network
computations such as FBA. Consider the following hypothetical
generic reaction, where X is a metabolite class containing the
instances x1, x2 and x3, and Y is a class containing the instances y1
and y2.

R1 :X +H2O=Y
Imagine that the only valid instantiation of R1 is
R2 :x1 +H2O=y1
Imagine further that the PGDB contained this additional reaction:
R3 :a+b=x1
Software that naively traversed the metabolic network by

searching for literal matches between the reactants and products
of reactions would not detect that the same metabolite can be
both a product of R3 and a reactant of R1. Therefore, we
developed a preprocessing stage that generates instantiated forms
of generic reactions, in which appropriate compound instances have
been substituted for compound classes. Successfully instantiated
reactions are included in the generated FBA model that is sent to the
solver.

The instantiation code enumerates all possible ways of combining
the instances of X with those of Y , and generates corresponding
reaction instances by substituting each class with one of its instances.
If, for a given instance in X, there is exactly one instance in
Y that leads to a mass balanced reaction, then an instantiated
reaction structure is created for this combination of instances.
This instantiated reaction is added to the FBA model (but is not
permanently stored in the PGDB as a new frame). If more than
one instance in Ys leads to a mass balanced equation for a given
instance in Xs, then the situation is considered ambiguous, and no
instantiated reaction is generated.

Note that for instantiations to succeed, it is key that the appropriate
instance metabolites exist in the PGDB, and that they have been
correctly classified under the compound classes used in the generic
reactions. We are curating our compound hierarchy on an ongoing
basis, to improve the success rate of this procedure.

Polymerization pathways are handled separately. These are often
involved in fatty acid metabolism, where a series of elongation steps
are chained together. For a limited set of polymerization pathways,
Pathway Tools generates instantiated reactions, with as many as
eight monomer units added. The chemical formula of a monomer
unit is automatically inferred from the one reaction in the polymer
pathway that contains the polymerization step.

To include other cross-linked and complex compounds like
glycans, we recommend defining representative compounds that
stand for common chemical fragments within the lipopolysaccharide
network, and to formulate reactions and pathways based on those
representatives.

Unbalanced reactions: unbalanced reactions should not be used in
an FBA model. An unbalanced reaction could create an infeasible
model or a model that generates incorrect fluxes, because they do
not follow the law of conservation of mass. Therefore, during the
preprocessing phase, unbalanced reactions are removed from the
fixed-reactions set and try-reactions set.

Since a single unbalanced reaction could generate an incorrect
FBA model, the process of balance-checking reactions is stringent: if
it cannot be determined with certainty that a reaction is balanced, that
reaction is not included in the model. There are reactions for which
the preprocessing could not determine if they were really unbalanced
(e.g. if chemical structures are missing for their substrates), but they
are still not included in the model.

The log file contains a list of all reactions that were not included
in the model due to their unbalanced state. The balance state of a
reaction can be verified within the reaction editor.

4.2 Gene and reaction knockouts
MetaFlux can solve FBA models in the context of single and

multiple knockouts of genes and reactions. The user specifies a
set of n genes and/or k reactions and the number of g>0 genes
and r >0 reactions that are simultaneously ‘removed’ from the FBA
model. Each g–r combination of the subsets of genes and reactions
constitute a reduced FBA model for one knockout experiment. That
is, the total number of knockout experiments is n!

g!(n−g)!
k!

r!(k−r)! .
Removing a gene implies that zero, one or several reactions might
become inactive in the model. There might be no reaction or several
reactions becoming inactive since knocking out one gene takes
into account protein complexes as well as isozymes. MetaFlux

392



[15:17 27/1/2012 Bioinformatics-btr681.tex] Page: 393 388–396

FBA analysis

solves the corresponding reduced FBA model typically showing
growth or no-growth of the organism, although partial growth is also
possible.

Genome-wide sets of single- and multiple-knockouts for genes
and reactions can be succinctly specified using keywords. For
example, all metabolic genes, that is, all genes whose product
catalyzes at least one metabolic reaction, can be specified with one
keyword.

MetaFlux outputs the results of all knockout experiments into
a single solution file listing the genes that were knocked out, the
reactions made inactive and the flux of the biomass reaction (i.e. the
objective function). The user can also request that a file be produced
for each knockout experiment that lists the fluxes of all the reactions
in the corresponding reduced FBA model.

5 DISCUSSION

5.1 Application to Homo Sapiens
We have applied our FBA modeling tool to the HumanCyc PGDB.
HumanCyc was created in 2003 (Romero et al., 2004) from the
complete Human proteome extracted from GenBank. After a hiatus
of several years, curation of HumanCyc resumed in 2009, and
the accuracy of the HumanCyc metabolic network has benefited
from this modeling exercise. The manual aspects of this model-
building project involved ∼4 weeks of full-time work. The resulting
FBA model is available as HumanCyc version 15.5, and in the
Supplementary Materials.

In addition to MetaFlux, we used the dead-end metabolite
tool, available in Pathway Tools, to identify compounds that are
only reactants, or only products, of HumanCyc reactions. Such
compounds are necessarily excluded from FBA models due to
balance constraints. Therefore, any compounds that are truly only
reactants in a metabolic network must be obligate nutrients (such
as essential amino acids or vitamins); we added some input dead-
ends to the fixed set of input nutrients as needed to generate all
biomass metabolites with no added reaction. Similarly, dead-end
metabolites that are only products in HumanCyc reactions cannot
be further metabolized by the metabolic network and must be added
to the secretion set to balance the FBA model. This was done for
two dead-end metabolites in the HumanCyc model (see File 1 in
Supplementary Material).

The gap-filling analysis of the HumanCyc metabolic network
proposed insertion of a number of reactions (which in some cases
constituted entire pathways) from the MetaCyc DB for inclusion
in HumanCyc to enable production of biomass metabolites. We
researched these reactions in the experimental literature and
found that many of the proposed reactions had been observed
experimentally, which we added to HumanCyc.

Examples of added reactions are EC 5.4.2.7, which is mediated
by a phosphodeoxyribomutase encoded by the PGM2 gene. We
added a metabolic pathway for choline degradation that includes
reactions catalyzed by a choline dehydrogenase encoded by CHDH
(EC 1.1.99.1) and a betaine aldehyde dehydrogenase encoded by
ALDH7A1 (EC 1.2.1.8). We also inserted reactions previously absent
from HumanCyc that are known to occur experimentally but with
no known enzymes. These include EC 2.4.2.23 catalyzed by an as
yet unidentified deoxyuridine phosphorylase; an entire pathway for
palmitoleic acid biosynthesis, including EC 1.4.99.–, catalyzed by

a palmitoyl desaturase; and EC 3.1.2.14 catalyzed by a putative
palmitoleayl thioesterase.

We also modified reaction directions as suggested by
the gap-filler and supported by literature research. These
include the addition of the reverse reaction direction for
existing reactions: EC 2.4.2.1, a purine nucleoside phosphorylase
encoded by the gene PNP, which acts upon multiple substrates;
EC 1.17.4.1, an ADP reductase encoded by gene RRM; EC 1.5.1.3,
a dihydrofolate reductase (DHFR); and EC 5.3.1.1, a triosephosphate
isomerase (TPI1).

The transformation of HumanCyc into a working FBA model was
an iterative process that involved >30 computational experiments.
Those experiments identified biomass components that could not
be produced because the required inputs were absent, such as
pantothenic acid, Vitamin B5 required for enzymatic co-factors
and missing essential nutrients such as choline. Other problems
encountered involved errors in human curation of the network
model, such as enzymes curated as existing in the wrong
compartment (example: HMGCoA Reductase in peroxisome but not
cytosol).

An interesting result occurred when MetaFlux made multiple
attempts to add or reverse reactions to produce dimethylglycine
formerly called vitamin B15 or B16 (Graber et al., 1981). This
compound is not considered a classical vitamin, because no
deleterious effects have been found when absent from the diet, but
is used as a nutritional supplement to enhance athletic performance
(Gray and Titlow, 1982). It is unclear where dimethylglycine is
produced in human metabolism other than degradation of choline
which is an essential nutrient (Haubrich and Gerber, 1981; Skiba
et al., 1982). Dimethylglycine is in food and is consumed as a
nutrient (Huang et al., 2008), and since the modeling program
requires more of it to balance the metabolic network, this may be
the case for the biological system as well.

From a simple nutrient set of nine essential amino acids, four
vitamins, glucose, glutamine, pyruvate, phosphate and choline, the
HumanCyc FBA model is able to produce the 11 non-essential
amino acids, the ribo and deoxy-ribo nucleotides, four enzymatic
cofactors, complex membrane lipids and steroid hormones. The
resulting model produces 52 biomass metabolites (see Table 1 and
File 1 in Supplementary Material). The fluxes can be visualized by
clicking the following region of text to invoke BioCyc Omics Viewer
using File 1 in Supplementary Material.

5.2 Application to E.coli
EcoCyc (Keseler et al., 2011) is a highly curated PGDB of
the well-studied Gram-negative bacterium E.coli K-12 MG1655.
Although EcoCyc has a long curation history, this is our attempt to
produce an FBA model from the EcoCyc PGDB.

We started with an initial set of biomass compounds containing
only core metabolites needed for making proteins and nucleic acids,
and a few cofactors like Coenzyme A, NAD+ and NADP+. All
biomass compounds were placed into the try-set. Nutrients of a
minimal medium with glucose as a carbon source were placed
into the try-nutrient set. The ATP synthase reaction was explicitly
added to the model, which otherwise did not contain transport
reactions, although electron transfer reactions are included. We used
the gap-filler to suggest addition of reactions from MetaCyc, and
to suggest reversal of reactions, from both EcoCyc and MetaCyc,
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using default values for the weights. After initial fixes that allowed
the core metabolites to be produced, we incrementally added more
compounds to the biomass.

A common problem we encountered was related to reactions
involving protein metabolites. If the chemically modified forms
of a protein lack chemical structures in the PGDB, then the mass
balance of its reactions cannot be determined, and such reactions
were filtered from the model. To remedy these cases, adequate
protein structures were devised and added, and the reactions were
properly balanced. One example was the reaction ADPREDUCT-
RXN, whose metabolites are reduced and oxidized thioredoxin; once
adjustments were made, the biomass compound dATP was produced
by the model. Another example was reaction 1.8.4.8-RXN, which
also needed reduced and oxidized thioredoxin to produce sulfite,
on the path ultimately to l-cysteine. This biomass compound was
produced through gap-filler addition of reactions from MetaCyc that
involved sulfite. Balancing this reaction eliminated the unnecessary
reaction additions. A third example was reaction RXN0-882.

The gap-filler suggested adding >140 reactions to EcoCyc
to produce the minor biomass constituent spermidine. It turned
out that a waste product of spermidine synthesis in EcoCyc is
S-methyl-5-thio-d-ribose, which is a metabolic dead-end because
EcoCyc contained no transporter for this compound (it is known to
be secreted from the cell). The existence of the dead-end inhibited
utilization of the existing pathway in EcoCyc, thus the gap-filler saw
the need to add a large number of alternative reactions. Adding S-
methyl-5-thio-d-ribose to the secretions set resolved this problem. In
future work, it would be useful to investigate whether automatically
adding all dead-end metabolites to the try-secretions set would make
it easier to find these cases.

Extending the biomass to include lipid products involved
significant work. To demonstrate the principle, we focused on
producing lipids containing fatty acids with 16 carbons. The
main barrier was the proper curation of the generic reactions and
the classifications of lipid instances, such that generic reactions
were instantiated correctly. The Pathway Tools command ‘Show
pathway’s instantiated reactions’ is very useful for debugging
generic reactions.

Once the gap-filler no longer added reactions to the model, we
converted the model into a true FBA model, without any try-sets.
To ensure that the TCA cycle carried flux under the aerobic growth
condition we tested, we had to remove several reactions explicitly
from the model, involving the glyoxalate bypass and citrate lyase.
These reactions are normally disabled by cellular regulation. The
resulting FBA model produces 58 biomass metabolites (see Table 1
and File 2 in Supplementary Material). The fluxes can be visualized
by clicking the following region of text to invoke the BioCyc Omics
Viewer using File 2 in Supplementary Material.

Many of the encountered problems in preparing an FBA model for
EcoCyc took between half a day and a day to analyze and resolve.
Overall, it took 4 weeks of work to construct the model, which is
available as EcoCyc version 15.5, and in Supplementary Materials.
For this PGDB, the reaction gap-filler did not help, as EcoCyc was
already well curated in the sense of containing the required reactions,
such that no truly missing reactions are needed to be imported
from MetaCyc. Most fixes involved repairs to existing reactions.
The gap-filler component that was very useful was determination of
which biomass compounds could not be produced at a given point
in time.

Table 1. Reaction counts for each PGDB

PGDB Reactions in Reactions in Reactions with
PGDB model flux

HumanCyc 1721 2411 241
EcoCyc 1330 1888 370
MetaCyc 6750 13 920 NA

Column 2: number of metabolic reactions. Column 3: number of reactions in the
FBA model, after instantiation of generic reactions and converting reversible reactions
into two unidirectional reactions. Column 4: number of reactions that carried flux in
a solution of the model. The MetaCyc statistics are relevant because they show the
number of reactions considered by the gap-filler. The MetaCyc ‘Reactions in Model’
cell includes forward and backward directions of every MetaCyc reaction since the
gap-filler considers reversed reactions.

We validated the E.coli model, and MetaFlux in general, by
using the gene knockout component of MetaFlux to simulate
the effects of single-gene deletions in E.coli in glucose minimal
medium. As our gold standard for E.coli knockout phenotypes
we used the Supplementary Material from Feist et al. (2007),
specifically, the 238 genes that were listed as essential under glucose
minimal medium experimental conditions, and the remaining 1022
non-essential genes. This approach allows a direct comparison of the
accuracy of the Feist et al. FBA model iAF1260 (accuracy = 92% for
1260 genes; accuracy = 90.6% for the same 873 genes assessed in
our model below) with our FBA model on the same gold standard.
Our model had an accuracy of 86.1% for the 873 genes that our
model shared with the gold standard [151 true positives (TPs), 601
true negatives (TNs), 59 false positives (FPs), and 62 false negatives
(FNs); accuracy is defined as (TP+TN)/(TP+TN +FP+FN)]. We
find the accuracy of our model to be acceptable, particularly given
that the model of Feist et al. has been under development for many
years. Please see File 3 in Supplementary Material for a table of all
the genes and their experimental and predicted essentialities.

5.3 Discussion summary
Overall, we found that development of FBA models using MetaFlux
was considerably shorter than times traditionally cited for FBA
model development: 4 weeks for EcoCyc and 4 weeks for
HumanCyc. However, an exact comparison of development times
is tricky. On one hand, the development of HumanCyc would have
been shorter had we begun that project with the current version
of MetaFlux, because some of its most valuable debugging and
report tools were developed toward the end of the project as a
result of our model-development experiences from HumanCyc. On
the other, our FBA models have not undergone as much validation
as some published models (Feist et al., 2007), and both EcoCyc
and HumanCyc had undergone curation before we converted them
to FBA models. The PathoLogic component of Pathway Tools can
further shorten model development times relative to the procedure
in Thiele and Palsson (2010) because it automatically infers the
metabolic reactions of an organism from its annotated genome.

Although many reaction insertions and reversals proposed by the
gap filler were correct and helpful in our development efforts, we
note that a significant number (∼50%) of the gap-filler-proposed
reactions were considered to be unlikely by our curators, due to
either lack of support in the experimental literature or reactions that
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were clearly outside their taxonomic range (e.g. reactions that occur
only in plants).

Henry et al. (2010) recently published a method for high-
throughput generation of FBA models that includes automated
gap filling of reaction insertions and of reaction directions for tens
of genomes. Given our experience that a significant fraction of
reaction insertions suggested by the gap-filler are incorrect, we
must question the trustworthiness of a purely automated approach.
We acknowledge the possibility that differences in details of
our algorithms or reference reaction DBs would yield different
gap-filler accuracies. Future work could compare our approaches
on a given genome.

An additional reason that we believe that some manual
intervention will be required for some time for the development of
high-quality FBAmodels is that the automated method used in Henry
et al. (2010) to estimate the biomass composition of a given organism
is approximate and should be supplemented by manual addition of
biomass compounds identified through experimental work, which in
turn will often lead to a need to manually supplement the reaction
network of the organism if the needed reactions are not present in
the reference reaction DB from which the gap-filler draws.

Solving, to optimality, gap-filler MILP problems using SCIP often
took <10 min on a 3.0 GHz Intel/4 GB workstation, although a few
runs required close to 1 h of processing. SCIP was chosen, among
other non-commercial solvers, since it has good performance for
solving MILP formulations. In particular, our experience shows that
it is very often much faster, on at least the type of formulations used
in MetaFlux, than the Gnu Linear Programming Kit (GLPK). SCIP
is also free for academic users.

Limitations of our approach include the following. Our reaction
gap-filler has limited flexibility regarding compartmentation;
reactions can be gap-filled into the same compartment as the reaction
occupied in MetaCyc, but cannot be shifted arbitrarily among
compartments—this issue will be remedied in a subsequent release.
Although use of the Cellular Overview to inspect fluxes predicted by
MetaFlux was useful in our projects, shortcomings of the approach
include that reactions suggested for addition by the gap-filler are
not present in the Cellular Overview of a given PGDB (since
those reactions are not yet part of the PGDB), making it difficult
to understand the connections of such reactions to the metabolic
network. And because one reaction can occur in multiple places in
the Cellular Overview, it can be confusing to see an isolated reaction
within a single pathway that carries flux (that reaction may carry flux
within a different pathway). Another issue is that a given generic
reaction in the Cellular Overview can be instantiated to multiple
instance reactions, each of which can carry a different flux value,
but the Cellular Overview does not contain separate lines for each
instance reaction.

5.4 Related work
Other FBA software packages include the COBRA Toolbox (Becker
et al., 2007; Bordbar et al., 2011), Acorn (Sroka et al., 2011),
SimPheny (Mahadevan et al., 2006), SurreyFBA (Gevorgyan et al.,
2010), FASIMU (Hoppe et al., 2011), BioMet Toolbox (Cvijovic
et al., 2010), CycSim (Le Fèvre et al., 2009), WEBcoli (Jung
et al., 2009) (only for E.coli) and Model SEED (Henry et al.,
2010). The capabilities of these systems are as follows. Ability
to model essential genes and reactions: COBRA, FASIMU,

BioMet, SimPheny, Acorn, Model SEED, CycSim, MetaFlux.
Flux variability analysis: COBRA, FASIMU, Acorn. Inference of
reactome and metabolic pathways from genome: Model SEED,
Pathway Tools. Gap-filling (Kumar et al., 2007): Model SEED,
COBRA, MetaFlux. Multiple gap-filling: MetaFlux. Visualization of
fluxes onto automatically generated layouts of full metabolic maps
and individual pathways: FASIMU, SimPheny, CycSim, WEBcoli,
Acorn, SurreyFBA, COBRA, MetaFlux/Pathway Tools.

GapFill (Kumar et al., 2007) was the first program for filling
gaps in FBA models. Its gap-filling strategies include inserting new
reactions (from to a reference DB such as MetaCyc), reversing the
directionality of existing reactions, and adding transport reactions
between compartments or the external space. GapFill does not
gap-fill a biomass reaction as it assumes that the biomass reaction
is fixed and forms one complete reaction. Therefore, if no subset of
reactions can complete the network such that the biomass reaction
has a non-zero flux, GapFill will not produce suggestions, whereas
MetaFlux will identify the subset of biomass metabolites that can
be produced. In addition, GapFill does not postulate changes to the
nutrients or secreted compounds as MetaFlux does.

A unique aspect of Model SEED is its capability to infer the
biomass composition of an organism. In contrast, MetaFlux enables
an iterative generation process of FBA models integrated into a
complete tool for navigating, querying and modifying PGDBs.
Model SEED uses a gap-filling algorithm similar to that of GapFill.

High fluxes due to loops have been reported by many other
researchers, and solutions to detect and remove them have been
proposed (Price et al., 2006; Smallbone and Simeonidis, 2009).
These approaches apply to solving an FBA model and not for solving
MILP as done in this work. We have applied a simple technique of
minimizing the reaction fluxes to remove these high fluxes.

The GrowMatch program reconciles an FBA model with
experimental predictions (Kumar and Maranas, 2009). It uses gene
knockout experimental data to correct an FBA model based on
growth/no-growth mismatches between in silico prediction and
in vivo experimental data. It does not generate FBA models per
se, although it can be used to validate a model and help correct a
biomass reaction.

5.5 Final conclusion
MetaFlux is a new tool that can increase the speed to construct
FBA models for PGDBs. It is well integrated in Pathway Tools,
which offers other tools to navigate, modify and analyze PGDBs. In
particular, flux values can color metabolic maps available in Pathway
Tools.

When compared with all other FBA software tools known to
us, MetaFlux has a unique capability to simultaneously suggest
modifications to the four essential sets describing an FBA model,
namely, the set of reactions, the set of metabolites of the biomass
reaction, the set of nutrients and the set of secretions.

We have shown the capabilities of MetaFlux on two DBs, EcoCyc
and HumanCyc. This experience demonstrated the applicability of
MetaFlux on two complex DBs and the rapidity it provided to
construct FBA models.
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